If it's not what You are looking for type in the equation solver your own equation and let us solve it.
X^2+20X-11200=0
a = 1; b = 20; c = -11200;
Δ = b2-4ac
Δ = 202-4·1·(-11200)
Δ = 45200
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{45200}=\sqrt{400*113}=\sqrt{400}*\sqrt{113}=20\sqrt{113}$$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(20)-20\sqrt{113}}{2*1}=\frac{-20-20\sqrt{113}}{2} $$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(20)+20\sqrt{113}}{2*1}=\frac{-20+20\sqrt{113}}{2} $
| x/3+x/8=5/3 | | 20x-50+10x=60-80x | | -2(1-x)=2x-7 | | -8m-24=-4(2m+6) | | (2q+5)=17 | | 15(1/3+3)=6(b+9) | | -20x^2+20x+560=0 | | 6x-8-2x=6x-8-2x | | 2x2+8=80 | | 6x=(3x-3) | | x+(0.666666667x-15)=180 | | 200m-100m+53075=56100-175m | | 6x−8−2x=−16 | | 3x-5(x+6)=-3(x+6)-3 | | x+(0.66x-15)=180 | | 0.75t+0.25(10-t)=0.79(10) | | x2-8=92 | | 13(x-2)=2x+9 | | 95-n=135 | | 7x-7+3x=5x+33 | | 13(x+2)=2x+9 | | (b)=-9 | | 13y+37=76 | | 0.2z-0.05=-0.03z | | -2v^2*8=0 | | 9(x-5)=4x+6 | | 3x+14/4+x+57/7=17 | | -2-5(4n-6)=-132 | | 2p-4(5-2p)=6(p-2)-36 | | (z-8)^2=11 | | 9/7=36/x | | 0.1z-0.07=-0.03z |